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Energy Storage Control with Aging Limitation
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Abstract

Energy Storage Systems (ESS) are o�en proposed to
mitigate the �uctuations of renewable power sources
like wind turbines. In such a context, the main objec-
tive for the ESS control (its energy management) is to
maximize the performance of the mitigation scheme.
However, most ESS, and electrochemical ba�eries

in particular, can only perform a limited number of
charge/discharge cycles over their lifetime. �is limi-
tation is rarely taken into account in the optimization
of the energy management, because of the lack of an
appropriate formalization of cycling aging.
We present a method to explicitly embed a limita-

tion of cycling aging, as a constraint, in the control op-
timization. We model cycling aging with the usual “ex-
changed energy” countingmethod. We demonstrate the
e�ectiveness of our aging-constrained energy manage-
ment using a publicly available wind power time series.
Day-ahead forecast error is minimized while keeping
storage cycling just under an acceptable target level.

1 Introduction to Aging Control

1.1 Why Limiting Aging in Energy Storage
Control?

Energy Storage Systems (ESS) like electrochemical
ba�eries can be used as bu�ers to reduce power �uc-
tuations in di�erent applications. For wind or solar
power generation, an ESS can mitigate the �uctua-
tions of the renewable power source. In an hybrid
electric vehicle (HEV), it absorbs the fast �uctuations
of the driving power pro�le to keep the combustion
engine close to an e�cient operating point.
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In these two applications, the control of the ESS
is o�en treated as an optimization problem where
the objective is to maximize the performance of the
overall system. Performance criterions can be, for
example, the fuel e�ciency for a HEV, or a mea-
sure of the �uctuations at the output of a combined
wind-storage system (cf. �gure 1 introduced in the
next section). �e control decides how and when
to charge and discharge the ba�ery to maximize the
performance objective.

However, most ESS, and electrochemical ba�eries
in particular, can only perform a limited number of
charge/discharge cycles over their lifetime. �is ag-
ing phenomenon causes a degradation of the ba�ery
parameters: decrease of the capacity, increase of the
series resistance. �is can lead to an eventual ESS re-
placement. �is is why aging is crucial for evaluating
and then minimizing the life-cycle cost of an ESS [1,2].

Unfortunately, ba�ery aging is seldom taken di-
rectly in the control optimization. O�en, it is only
a�er simulating the behavior of the system, that an
aging study is conducted. Before discussing existing
work on aging control, we need to give an overview
of aging modeling.

1.2 Models for Cycling Aging

�e purpose of limiting ba�ery aging requires a
model for the aging phenomenon. Ba�ery aging can
be studied at the microscopic scale of the degradation
processes, which is a research �eld by itself. How-
ever, for control, we need simpler models that are
de�ned on the system level. Our work relies on ag-
ing models from the literature which are well in line
with the datasheets provided by ba�ery manufactur-
ers. �e veri�cation of such models using (acceler-
ated) aging test benches is again another �eld of ex-
pertise.

A commonly used empirical model for cycling ag-
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ing is the “Ah throughput” model. It is widely de-
scribed in the literature [3, §4] [4, §4], with some vari-
ations like “weighted Ah throughput” models to ac-
count for technology-speci�c aggravating aging fac-
tors.

�is model considers that a ba�ery can exchange
a �xed amount of charge over its life. As such,
the model consists in integrating over time the cur-
rent that goes in and out of the ba�ery (thus the
name “Ah-throughput”). We use a common variation
which consists in counting the exchanged energy in-
stead of the charge (Wh vs. Ah). �is energy counting
model integrates the absolute power Psto of the bat-
tery:

Eexch (t ) =

∫ t

0
|Psto |dt (1)

and this exchanged energy is then compared with the
energy exchanged during one full charge-discharge
cycle, i.e. two times the energetic capacity of the bat-
tery (2Erated ). �e ratio gives Ncycl , the number of
equivalent full cycles:

Ncycl (t ) = Eexch (t )/(2Erated ) (2)

�is number increases with time, and when it
reaches Nl i f e , the maximum number of full charge-
discharge cycles, the ba�ery is considered to be in
end-of-life and should be replaced1. Nl i f e is typi-
cally between 500 and 5000 for ba�eries. An impor-
tant property of this counting method is that it al-
lows a number of cycles that is inversely proportional
to the amplitude of these cycles (o�en called Depth
of Discharge). �is fact is o�en veri�ed on the “aging
curves” provided by manufacturers of lead-acid bat-
teries. �e reader can �nd a deeper analysis on the
link between energy counting and cycle counting in
Serrao et al. [5] and our thesis [6, §2.2].

Now that an aging model is established, we can
turn to our main contribution: the mitigation of cy-
cling aging through the ESS control.

1.3 Previous Work on Aging Control

�e problem we have described in section 1.1 was
already underlined by some authors [7–9]. We can
summarize some keys aspects of their contributions:
Serrao et. al [7] (HEV context) and Borhan et. al

1A common and equivalent expression is to de�ne a State of
Aging (SoA) as theNcycl (t ))/Nl i f e ratio. SoA starts at 0 zero,
and end-of-life is reached when SoA(t ) = 1

[8] (wind power context) both use weighted charge
counting to model cycling aging, while Koller et. al
[9] (peak shaving context) use a piece-wise a�ne
model with quadratic cost because it enables e�cient
optimization solving.

All these approaches a�empt to reduce the aging
by adding the aging increase as a penalty in the opti-
mization criterion, which otherwise contains only a
performance criterion (like the HEV fuel e�ciency).
�e control designer is thus forced to tune a weight-
ing factor to �nd a satisfactory compromise between
performance and aging.

We propose instead to express aging limitation as
an inequality constraint rather than a cost penalty.
�is can ease the implementation of aging limitation,
because the control designer can directly set a desired
maximum number of cycles Nl i f e , with no need for
tuning.

1.4 Reformulating aging limitation as a
constraint

Based on the cycle counting model (2), we can indeed
express aging limitation as an inequality constraint.
Given Tl i f e , the expected lifetime of the project in-
volving the ESS, the non replacement of the stor-
age during the operational period is expressed by
Ncycl (Tl i f e ) ≤ Nl i f e . �is translates into a constraint
on the mean absolute storage power :

1
Tl i f e

∫ Tl i f e

0
|Psto |dt = 〈|Psto |〉Tl i f e ≤ Pexch (3)

where Pexch is what we call the mean exchangeable
power. It is the ratio of the lifetime exchangeable en-
ergy of the storage with the duration of the project:

Pexch = 2EratedNcycl/Tl i f e (4)

Inequality (3) is the condition that should be sat-
is�ed by the ESS control algorithm (which sets Psto
at each time) to limit the aging. However, this is an
integral constraint on a very long time horizon (Tl i f e
typically in the range of 5 to 20 years). �is horizon
is much longer than a usual ESS control horizon (on
the order of the energy/power ratio of the ESS, i.e.
minutes to hours). It cannot be practically solved by
common control algorithms such as Model Predictive
Control (MPC) or Stochastic Dynamic Programming
(SDP). As such, expressing the lifetime constraint (3)
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Figure 1: Wind-storage system used as a context for
storage aging limitation

is only a �rst step, and our key contribution is to re-
place lifetime constraint (3) with a manageable con-
straint, in the next section.

2 Problem Description

2.1 Modeling

2.1.1 Wind-storage system

We base our study on the context of a wind-storage
system for a day-ahead production commitment. �e
storage is used to mitigate the �uctuations of the
wind power plant (see [10, 11] for previous work on
this context). Figure 1 shows the variable and energy
�ows of this system, with the three main ones high-
lighted in red:

• Pmis is the di�erence between the wind power
production Pprod and the commitment P∗дr id
made one day in advance, based on a produc-
tion forecast2.

• Psto is the power absorbed by the storage (con-
vention Psto > 0 when charging, Psto < 0 when
discharging).

• Pdev is the commitment deviation (Pдr id −P∗дr id )
for which the wind operator must pay penalties
to the grid operator (cf. [10] for detailed con-
text).

�e commitment deviation can be wri�en as:

Pdev = Pmis − Psto (5)
2see ANEMOS.plus project report [12] for a state of the art on

wind power forecasting
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Figure 2: Graphical representation of the dynamical
models for the Energy Storage System and
its aging. On the le�, the usual stock of
stored energy (6). On the right, the aux-
iliary stock of “exchangeable energy” (8),
which we introduce to enforce aging limi-
tation (3).

to highlight how the storage can be seen to act di-
rectly as a mitigation of the day-ahead forecast error
Pmis .

2.1.2 Energy Storage System

For the purpose of energy management, we need a
simple energetic model of the ESS. We use a discrete
time model, with ∆t as the time step:

Esto (k + 1) = Esto (k ) + (Psto (k ) − Plosses )∆t (6)

where Esto is the energy stored in the ESS. Plosses
represents all the energy losses of the storage (in
particular: self-discharge and Joule losses) and, in
general, is a complex function of Psto and Esto , and
depends on the technology. Since we do not focus
on these losses here, we consider a lossless storage:
Plosses = 0.

�e amount of stored energy Esto is constrained
by the rated energy Erated :

0 ≤ Esto ≤ Erated (7)

and we can de�ne the State of Energy: SoE =

Esto/Erated (∈ [0,1]). �e dynamical model de�ned
by (6) is graphically represented on the le� side of
�gure 2.

2.1.3 Exchangeable Energy

As explained in section 1.4, aging limitation can be
expressed as an integral constraint (3) on an horizon
that is too long. We thus introduce a new auxiliary
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state variable to embed constraint (3) in a manageable
way. We call it the exchangeable energy stock, with
the following dynamical behavior:

Xsto (k+1) = sat
{
Xsto (k )+(Pexch−|Psto (k ) |)∆t

}
(8)

where Pexch is the mean exchangeable power (4)
and “sat” enables the over�ow of this stock beyond
a threshold Xmax :

sat(x ) =



x if x 6 Xmax

Xmax if x > Xmax
(9)

We illustrate this dynamics on the right side of �g-
ure 2. A key stage is requiring this stock to be non
empty: 0 ≤ Xsto , which translates into a constraint
on the control variable Psto :

|Psto (k ) | ≤ Pexch + Xsto (k )/∆t (10)

�is constraint is indeed simpler than (3) because
it only involves the current value of the state vari-
able Xsto . One can show that combining constraint
(10) with the dynamical equation (8) gives a su�cient
condition to respect the original aging limitation (3).
Xsto interpretation: We propose to interpret this

new variable Xsto as a bu�er of exchangeable energy.
When the ba�ery is heavily used (|Psto | ≥ Pexch ),
this stock decreases. When the ba�ery is less used
(|Psto | < Pexch ), the stock regenerates. If Xsto
reaches zero, this forces |Psto (k ) | ≤ Pexch , which is
a conservative way to respect condition (3). �e �-
nite range of Xsto explains that in the long run, the
average of |Psto | is indeed smaller than Pexch .

One downside of this formulation is that it intro-
duces the parameter Xmax , the size of the exchange-
able energy stock, which must be chosen. If it is too
small, constraint (10) falls back to |Psto (k ) | ≤ Pexch
which is stricter than (3). A too big value yields a big
stock that the control optimization must manage, so
it brings back the problem of a too long optimization
horizon. At the end of the article (section 3.4), we
extend this qualitative reasoning with numerical re-
sults on the e�ect choosing Xmax . We argue that a
“big enough” size gives enough freedom so that the
system performance is eventually the same as with
the original constraint (3).

2.1.4 Forecast Error Persistence

Day-ahead forecast error Pmis is a stochastic input for
the ESS control. Also important, it exhibits persis-
tence (e.g. positive correlation) along several hours

[10]. We capture both the randomness and the per-
sistence using an Autoregressive AR(1) model:

Pmis (k + 1) = ϕPmis (k ) +w (k ) (11)

where w (k ) is a Gaussian white noise.
�is AR(1) model has two parameters: the stan-

dard deviation σP of Pmis (i.e. the RMS forecast error)
which is linked to the variance of w , and the AR co-
e�cient ϕ which is the correlation between two suc-
cessive hours. Both must be estimated on actual time
series [10].

2.2 Control Optimization

Now that we have expressed the system dynamics,
we can formulate the control optimization problem.
Our control objective is to keep the total output of the
wind-storage system (Pдr id = Pprod − Psto ) around
the day-ahead commitment P∗дr id , in a ±Ptol interval.
�e control, acting on the storage power Psto , should
minimize on average a penalty at each instant:

J =
1
K
E



K−1∑
k=0

cost (k )



with K → ∞ (12)

where cost (k ) is the following penalty function:

cost (k ) = max
{
0, |Pdev (k ) | − Ptol

}
(13)

which penalizes in absolute value each deviation out-
side the tolerance band. �is penalty with a free
tolerance band is inspired by a grid code for wind-
storage systems in French islands [10] and can be
similarly found in the Hungarian grid code [13, §5.A].

�is optimization includes the temporal con-
straints introduced with the dynamical equations (6),
(8) and (11). �e expectation E{} is needed because of
the stochastic input w in (11). �erefore, minimizing
J is a stochastic dynamic optimization problem [14],
which we solve using our open source Stochastic Dy-
namic Programming (SDP) package stodynprog [15].
Note that using SDP is not a requirement for solving
the formulation of aging limitation we present here.
Another control framework, like the popular Model
Predictive Control (MPC, with Koller et. al work [9]
as one example) could be used as well.
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Figure 3: Wind-storage system ful�lling a day-ahead
production commitment. Simulation with
control C1: optimal ESS control with no ag-
ing limitation

3 Aging Control Results

3.1 Input Data

We use the publicly available NREL “Eastern Wind
Dataset” [16] as a test case for our aging control
method. It provides 3 years of production and day-
ahead forecast data3 at an hourly timestep (∆t = 1h)
for many wind farms in the US. We choose farm
#7277 and normalize the powers by its production ca-
pacity (132.3 MW) so that production and forecasts
are expressed in per unit (pu). �is farm has a mean
production of 0.343 pu and RMS forecast error isσP =
0.195 pu. �e AR coe�cient ϕ, which gives the cor-
relation of forecast errors between two successive
hours, is estimated at 0.79. �is high positive tempo-
ral correlation is typically observed with day-ahead
forecasts and it adversely impacts the system perfor-
mance [10]. On �gures 3 and 4, we represent a 10
days extract of this input data (forecast in gray, pro-
duction in light blue).

3.2 Test Case

We consider a storage of capacity Erated = 1 h4. De-
viation tolerance Ptol is set to 0.2 pu (shaded area on
�gures 3 and 4). �is 20 % tolerance is in line with the

3this dataset is in fact synthetic: production and forecasts are
reconstructed from numerical weather models [17].

4Erated is expressed in hours when working in per units. Ac-
tual capacity is 1 h×the rated power of the wind farm, which
is a typical value in such a context of day-ahead production
hedging.
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Figure 4: Wind-storage system ful�lling a day-ahead
production commitment. Simulation with
control C3: optimal aging-constrained ESS
control

grid code for French islands. For aging limitation, we
require a maximum of Nl i f e = 3000 equivalent full
cycles over the periodTl i f e = 20 years. �is gives an
exchangeable power Pexch = 0.034 pu, which is quite
small compared to the RMS forecast error σP . We
choose this (moderately) ambitious aging limitation
so that it cannot be reached “by chance”, without an
explicit action in the energy management. �is way
we can show the e�ectiveness of our aging control.
Finally, we set Xmax to 1.71 h (Pexch50 h) but we ex-
plain this choice further, in section 3.4.

We simulate the wind-storage system with di�er-
ent controls and collect three performance statistics
(reported in table 1):

• Aging: the number of equivalent full cycles
Ncycle (Tl i f e ), which we would like to be less
than Nl i f e = 3000.

• Ovtol, shorthand for “Over tolerance”: the pro-
portion of hourly time steps spent above the tol-
erance threshold (|Pdev (k ) | > Ptol ).

• Ovtol MAE: Mean Absolute Error above the tol-
erance threshold. �is is in fact the criterion J
minimized by the control, given penalty func-
tion (13).

3.3 Simulation Results

For each control strategy, we run the simulation with
the entire 3 years dataset and we report the statistics
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in table 1. �e controls we compare, along their re-
spective results, are:

1. C1: optimal control with no aging limitation.
�is gives the best performance for J (0.013 pu),
but aging is twice above the target of 3000 cy-
cles/20 yr.

2. C2: we overload C1 with our aging limitation
(10) introducing Xsto in the dynamics. Aging
limitation is indeed e�ective, but the perfor-
mance is severely decreased because C1 doesn’t
anticipate Xsto evolution. As a consequence,
Xsto value is o�en zero, or close to, which im-
plies a overly conservative limitation of |Psto |
through inequality (10).

3. C3: optimal control with aging limitation (using
Xsto ): Aging limit is respected, and the perfor-
mance (0.014 pu) is not far from the best perfor-
mance without aging limitation (C1).

As a baseline reference, C0 gives the performance
statistics in the absence of storage. �ese simula-
tions show the e�ectiveness of our aging control C3
at keeping cycling aging just below the user imposed
limit, while still keeping the best possible perfor-
mance, like the regular optimal control C1.

Table 1: Performance comparison

Control
Aging and performance statistics
Aging Ovtol Ovtol MAE

C0 – 27.5 % 0.032 pu
C1 6 372 8.49 % 0.013 pu
C2 2 998 19.97 % 0.023 pu
C3 2 966 9.97 % 0.014 pu

To illustrate the qualitative behavior of these two
controls, we represent an extract of trajectories with
C1 and C3 on �gures 3 and 4 respectively. �e time
periods when |Pdev | > Ptol are highlighted in orange.
One can see that the time spent outside the tolerance
band is quite similar between the two. Looking at the
SoE (bo�om panels), there are more �uctuations for
C1 than C3, but the slow (daily) variations are simi-
lar. However, we underline that strategy C3 cannot
be reduced to a simple linear low-pass �ltering of C1.
We can observe that with C3, the ba�ery spends more
time at rest (Psto = 0 so Pдr id = Pprod and SoE (t ) is

constant). All in all, the “thri�ier” ba�ery manage-
ment C3 is responsible for the reduction in the num-
ber of cycles by a factor of two compared with C1.

3.4 Choosing the Aging Control Horizon

We have so far le� undiscussed the choice of the only
tunable parameter of our method: Xmax , the size of
the exchangeable energy stock Xsto . Let us remind
that this stock is used to give freedom to the control
to allocate more ba�ery power (i.e. consume cycles)
when needed, while still keeping |Psto | below Pexch
on average.

For be�er reasoning, we express this stock size as
a time TX using the relation

Xmax = Pexch ×TX (14)

Parameter TX is the time it takes to recharge the
entire stock, starting from zero (Xsto stock is indeed
recharged, according to (8), at a rate equal to Pexch ).
�us, from the perspective of aging control, it rep-
resents the time horizon on which the ESS control
algorithm can borrow exchangeable energy from the
future. �erefore, we call TX the aging control hori-
zon.

We study its e�ect by varying its value from zero
to 500 hours in our age limiting control C3. We show
the resulting performance statistics on �gure 5 (red
curve). For a too small horizon (TX < 1 h), there is a
major performance loss due to the conservativeness
of our aging limitation method. As the horizon is in-
creased, the performance loss decreases. �en, for
an horizon TX greater than about 100 hours, there is
an optimal plateau as TX → ∞. We thus claim that
our method becomes equivalent to an optimal control
satisfying the initial aging constraint (3) that spans
over Tl i f e (20 years here).

�ese numerical results support the qualitative
reasoning proposed at the end of section 2.1.3. Also,
this justi�es a posteriori our choice of TX = 50 hours
in our previous simulations: it yields an (almost) op-
timal performance while being small enough to en-
sure the fastest convergence of the SDP optimization
algorithm5.

Finally, we can observe on �gure 5 a performance
gap of about 0.001 pu between C3 and C1 (control

5more precisely, we use a “policy iteration” algorithm [14, 15].
It includes iterations along time in each “policy evaluation”
step, and the number of those iterations is dictated by the
time constants of all stocks, e.g. TX .
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Figure 5: E�ect of the aging control horizon on
the performance of the optimal aging-
constrained control C3. A too small TX
(under ∼100 h) yields a too conservative
aging limitation which decreases the per-
formance. As a baseline, control C1
with no aging limitation shows the perfor-
mance di�erence due to the aging limita-
tion constraint.

without aging limitation, blue line). We claim that
this is the price of the aging constraint (a constrained
minimum is always worse or equal than a constraint-
free one). A further study could be to vary the aging
limit (3000 cycles on 20 years in this article) to gen-
erate a trade-o� curve between the performance and
the limit. �is would outline a Pareto front between
these two con�icting objectives (minimizing output
deviations and cycling aging).

4 Conclusion

We introduced a formulation of cycling aging (based
on exchanged energy counting) with two advan-
tages: it �ts naturally in the ESS control optimiza-
tion and it enables the control designer to directly
set a maximum number of ba�ery cycles over the
project lifetime. We illustrated the e�ectiveness of
our scheme with a simulation on an open dataset.
On this example, cycling is reduced by 50 % with a
less than 10 % decrease in performance.

Further studies could include looking at the trade-
o� between the limitation of storage aging and the
performance. Also, we plan to adapt our formalism
to other aging models, in particular weighted charge
counting [3,4], and more importantly calendar aging.
Calendar aging can be included in control optimiza-
tion when it depends on operational conditions like

SoE (particularly true for super capacitors [1]).
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